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THE ENERGY FORWARDS
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THE VOLATILITY SMILE FOR ENERGY OPTIONS
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Figure: EEX German Power Options implied volatility on April 13, 2022.
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THE ENERGY FORWARDS
I Let

(
Ω,F , (Ft)t≥0,P

)
;

I We denote by F(t, T1, T2) the t-time price of a forward with delivery in [T1, T2];

I We are interested in (call) options on forward contracts with delivery period:

Π(t) = e−
∫ T
t r(s)ds EQ [π (F(T , T1, T2))| Ft] (1)

with t < T ≤ T1 the maturity time, π the payoff function and Q ∼ P;
I We model the instantaneous forward curve F(t, ·) and obtain F(t, T1, T2) by

F(t, T1, T2) =
1

T2 − T1

∫ T2

T1

F(t,u)du; (2)

I We work with the Musiela parametrization

g(t, x) := F(t, t + x)

where x := T − t is the time to maturity.
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MODELING ENERGY FORWARDS

We need:

I Stochastic volatility;

I A model flexible enough to recover the volatility smile;

I To incorporate the maturity effect (Samuelson effect);

I Seasonality.

The class of models that we are going to present can be used for different
commodity markets.
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THE FORWARD DYNAMICS
We model gt := g(t, ·) as an element in a suitable Hilbert space H.

We consider the following Stochastic Partial Differential Equation (SPDE):

dgt = ∂xgtdt + a(t,gt)dt + σ(t,gt)dWt, (3)
where
I ∂x is the generator for the shift-semigroup Stf (x) = f (t + x);
I {Wt}t≥0 is an H-valued Wiener process with covariance operator Q ∈ L(H);
I a : R+ ×H → H and σ : R+ ×H → L(H) are state-dependent coefficients.

Equation (3) is an instance of a local volatility model for forward curves, where
the drift a and the volatility operator σ are functions of time and the current
level of the forward curve g.
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THE FORWARD CURVE SPACE H
We model gt as an element in the Filipović space:

For a given continuous and non-decreasing function
α : R+ → [1,∞) with α(0) = 1, H is the Hilbert space of
all absolutely continuous functions f : R+ → R for
which ∫

R+

f ′(x)2α(x)dx <∞ (4)

with the inner product

〈f1, f2〉 := f1(0)f2(0)+

∫
R+

f ′1(x)f ′2(x)α(x)dx for f1, f2 ∈ H,

and norm ‖f1‖2 := 〈f1, f1〉 = f1(0)2 +
∫
R+

f ′1(x)2α(x)dx.

Let: H+ := {f ∈ H : f (x) ≥ 0 for every x ∈ R+}.

Time to maturity (days)

0
500

1000
1500

2000
Tra

din
g d

ay

0
50

100
150

200
250

Fo
rw

ar
d p

ric
e

10
20
30
40
50
60
70

Figure: Smooth forward
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NO ARBITRAGE FOR ENERGY FORWARDS

I The forwards F(t, T1, T2) are traded asset, hence their (discounted) value
must a martingale under an equivalent martingale measure Q ∼ P;

I In particular, if F(t, T) is a martingale under an equivalent martingale
measure Q ∼ P, then the previous point is satisfied because of equation (2);

I However, this is a sufficient, but, strictly speaking, not necessary condition:
one may be interested in only some forward contracts.

I Also: it shouldn’t be possible to construct arbitrage opportunity by trading
on overlapping contracts. This already holds by construction (2).

11 / 33



CHANGE OF MEASURE: PRELIMINARIES

I We know that, if a stochastic process ϕ : Ω× R+ → R satisfies some
conditions, then we can define a measure Q ∼ P on (Ω,F) via

dQ
dP

∣∣∣∣
FT̄

= exp

{∫ T̄

0
〈ϕ(s),dWs〉 −

1
2

∫ T̄

0
|ϕ(s)|2 ds

}
. (5)

I The process W̃ defined by

W̃t := Wt −
∫ t

0
ϕ(s)ds (6)

is a Q-Wiener process w.r.t. {Ft}t≥0 on (Ω,F ,Q).
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CHANGE OF MEASURE (1)

Theorem (Part 1)
Let the process ϕ : Ω× R+ → R be de�ned by

σ(t,gt)ϕ(t) = r(t)gt − a(t,gt) for all t ≥ 0, (7)

and satisfy ”those conditions”. Then for {W̃t}t≥0 de�ned in (6), gt has the following
dynamics under Q:

dgt = ∂xgtdt + r(t)gtdt + σ(t,gt)dW̃t. (8)

In particular, if σ is of linear growth, then the process

e−
∫ t

0 r(s)dsF(t, T) = e−
∫ t

0 r(s)dsgt(T − t)

is a real-valued martingale under Q.
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CHANGE OF MEASURE (2)
Theorem (Part 2)
LetB := {B = [b1,b2] : b2 > b1 > 0]}. Let the process ϕ : Ω× R+ → R such that∫

B
σ(t,gt)ϕ(t)(T − t)dT =

∫
B

(r(t)gt − a(s,gt)) (T − t)dT for all B ∈ B, (9)

and such that ”those conditions” are satis�ed. Then for {W̃t}t≥0 de�ned in (6), gt
has the following dynamics under Q:

dgt = ∂xgtdt + (a(t,gt) + σ(t,gt)ϕ(t))dt + σ(t,gt)dW̃t. (10)

In particular, if σ is of linear growth, then for every [b1,b2] = B ∈ B, the process

e−
∫ t

0 r(s)dsF(t,b1,b2) =
e−

∫ t
0 r(s)ds

b2 − b1

∫ b2

b1

gt(T − t)dT

is a real-valued martingale under Q.
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THE CEV SPECIFICATION
The first specification we had in mind is the CEV model:

dgt = ∂xgtdt + βt gγt dWt, γ ≥ 1, (11)

with β : R+ → R modeling e.g. the seasonality/time-dependence.

Why not

γ < 1? What makes this problematic is the H-norm:

‖f γ‖2 = (f γ(0))2 +

∫ ∞
0

(
∂f (x)

∂x γ f γ−1(x)

)2
α(x)dx.

We need to make sure that the map
Ψ : H → H

f 7→ Ψ(f ) := f γ

1. ...is well defined in H;
2. ...is locally bounded and locally Lipschitz w.r.t. the H-norm;
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THE CEV IMPLIED VOLATILITY

3. It turns out that the CEV model is not very flexible:
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Figure: Example of implied volatility in the CEV model for γ = 1.41.

4. The CEV is also numerically unstable (intrinsic explosive nature).

1The data was simulated with a flat initial curve and one noise factor.
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NEW LOCAL VOLATILITY MODEL

Motivated, e.g. by [Ingersoll (1996)] and [Schlenkrich (2018)], we consider a
spline-type of speci�cation:
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Figure: Example of local volatility function.

Starting from a linear local
volatility...
...we can add a ”bump”
around the ATM values;
...we can adjust the slope on
the right-hand side;
...we can adjust the slope on
the left-hand side;
We need an extra ”internal”
point to avoid negative
volatility and sufficiently fast
decay.

where the spline is quadratic around the ATM values and linear otherwise.
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NEW LOCAL VOLATILITY MODEL AT WORK
The new model is able to capture the smile observed in the energy markets2:
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Figure: Left: Implied volatility on real data vs implied volatility on simulated data with
the spline-type local volatility specification (where the parameters have been
manually calibrated). Right: the local volatility function.

2The data was simulated with a flat initial curve and one noise factor.
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THE MODEL
The new specification is now:

dgt = ∂xgtdt + βt σsp(gt)dWt, (12)

where σsp(f ) is of spline-type in the sense discussed before.

Again, given s : R→ R a spline function, we need to make sure that the map
Ψ : H → H

f 7→ Ψ(f ) := s ◦ f

1. ...is well defined in H;
2. ...is locally Lipschitz w.r.t. the H-norm;

However:
3. We need to work with weakly differentiable maps (unless to smooth the

”edges” – also possible).
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LOCAL VOLATILITY MODELS
The diffusion term is of the form

σ : R+ ×H → L(H)

(t, f ) 7→ σ(t, f ).

I We need a rich class of operators in L(H):
• Every function φ ∈ H defines an elementMφ ∈ L(H) by

Mφ(h) := φh;

• So we can work with multiplicative operators defined by functions in H.
I We need a sufficiently rich class of functions from (R+×)H to H:
• Suitable maps are those that act point-wise on the curve

Ψ(t, f )(x) = ψ (t, f (x)) .

I We will then consider σ’s of the form σ(t, f ) =Mψt◦f =MΨ(t,f ).

22 / 33



LOCAL VOLATILITY MODELS
The diffusion term is of the form

σ : R+ ×H → L(H)

(t, f ) 7→ σ(t, f ).

I We need a rich class of operators in L(H):
• Every function φ ∈ H defines an elementMφ ∈ L(H) by

Mφ(h) := φh;

• So we can work with multiplicative operators defined by functions in H.

I We need a sufficiently rich class of functions from (R+×)H to H:
• Suitable maps are those that act point-wise on the curve

Ψ(t, f )(x) = ψ (t, f (x)) .

I We will then consider σ’s of the form σ(t, f ) =Mψt◦f =MΨ(t,f ).

22 / 33



LOCAL VOLATILITY MODELS
The diffusion term is of the form

σ : R+ ×H → L(H)

(t, f ) 7→ σ(t, f ).

I We need a rich class of operators in L(H):
• Every function φ ∈ H defines an elementMφ ∈ L(H) by

Mφ(h) := φh;

• So we can work with multiplicative operators defined by functions in H.
I We need a sufficiently rich class of functions from (R+×)H to H:
• Suitable maps are those that act point-wise on the curve

Ψ(t, f )(x) = ψ (t, f (x)) .

I We will then consider σ’s of the form σ(t, f ) =Mψt◦f =MΨ(t,f ).

22 / 33



LOCAL VOLATILITY MODELS
The diffusion term is of the form

σ : R+ ×H → L(H)

(t, f ) 7→ σ(t, f ).

I We need a rich class of operators in L(H):
• Every function φ ∈ H defines an elementMφ ∈ L(H) by

Mφ(h) := φh;

• So we can work with multiplicative operators defined by functions in H.
I We need a sufficiently rich class of functions from (R+×)H to H:
• Suitable maps are those that act point-wise on the curve

Ψ(t, f )(x) = ψ (t, f (x)) .

I We will then consider σ’s of the form σ(t, f ) =Mψt◦f =MΨ(t,f ).
22 / 33



WHAT ARE WE TALKING ABOUT?
Let us for now drop the time-dependency.

Remember the H norm:

‖ψ ◦ f‖2 = ((ψ ◦ f )(0))2 +

∫ ∞
0

(
∂f
∂x (x)(ψ′ ◦ f )(x)

)2
α(x)dx.

This norm interferes with the locally bounded conditions, locally Lipschitz
conditions, etc...
We then must analyze under which conditions a function ψ : R→ R defines a
map

Ψ : H → H
f 7→ Ψ(f ) := ψ ◦ f = {x 7→ ψ (f (x))}.
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A FIRST RESULT

We want to analyze under which conditions ψ : R→ R defines a map

Ψ : H → H
f 7→ Ψ(f ) := ψ ◦ f = {x 7→ ψ (f (x))}.

Proposition
I If ψ : R→ R has continuous derivative and f ∈ H, then ψ ◦ f ∈ H;

I If ψ : R+ → R+ has continuous derivative and limx→0 |ψ′(x)| < ∞, for f ∈ H+, it
holds ψ ◦ f ∈ H+.

In both cases, there exist constants Mn > 0 such that ‖ψ ◦ f‖ ≤ Mn for every f ∈ H
with ‖f‖ ≤ n, i.e. Ψ is locally bounded.
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I If ψ : R+ → R+ has continuous derivative and limx→0 |ψ′(x)| < ∞, for f ∈ H+, it
holds ψ ◦ f ∈ H+.

In both cases, there exist constants Mn > 0 such that ‖ψ ◦ f‖ ≤ Mn for every f ∈ H
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A SECOND RESULT
Proposition
If ψ : R+ × R→ R, (t, y) 7→ ψ(t, y) has locally Lipschitz derivative in the second
argument, then the map

Ψ : R+ ×H → H
(t, f ) 7→ Ψ(t, f ) := {x 7→ ψ(t, f (x))}

is locally Lipschitz for any f ∈ H.
The same also holds for ψ : R+ × R+ → R and f ∈ H+ .

In particular, the map

R+ ×H → L(H)

(t, f ) 7→ MΨ(t,f )

is locally Lipschitz.
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OUR SPECIFICATIONS

I CEV specification with γ ∈ R+:

• Well defined for every γ ≥ 1;
• Locally bounded for every γ ≥ 1;
• Locally Lipschitz for every γ ≥ 2;

• For 1 < γ < 2 we need to consider a ”functional” γ so to deal with the
issues for x → 0.

I Spline specification:

• Bounded;
• Well defined and locally Lipschitz if the spline is C1;

• For C0-splines we need to deal with the knots (where the classical
derivative is not defined): still possible.
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GEOMETRIC MODELS
We now want to consider an exponential class of models.

where
H> := {h+ ∈ H|h(x) > 0 ∀x, lim

x→∞
h(x) > 0}.

In particular:
I log(eh) = h for h ∈ H, i.e. log acts as a left inverse to e on H;
I elog h = h for h ∈ H>, i.e. e acts as a left inverse to log on H>;
and one can recover by Itô’s formula the dynamics of egt starting from the
dynamics of gt and vice-versa.
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PARAMETRIZATION OF THE LOCAL VOLATILITY FUNCTION
I 0.5 < ω` ≤ 1
I 1 < ωr ≤ 1.5
I β` ∈ I` ⊂ R+

I βr ∈ Ir ⊂ R+

I 0 < ε < 1
I σATM(x) = ax2 + bx + c

Then:

σsp(x) =


β0
` x 0 ≤ x < εx`
α` + β` x εx` ≤ x < x`
σATM(x) x` ≤ x < xr
αr + βrx x ≥ xr

0 x x g0(0) xr

Lo
ca

l V
ol

at
ilit

y 
Fu

nc
tio

n
where x` := ω`g0(0) and xr := ωrg0(0).

We then also have parameters for the covariance structure, etc..
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THE (HIGHLY COSTLY) SIMULATIONS
For every gt ∈ H and T ≥ t, we have

gT = ST−tgt +

∫ T

t
ST−uσ(u,gu)dWu. (13)

Let now
I {ej}j orthonormal functions in H;
I {cj}j strictly positive numbers;
I βj mutually independent BMs.
Then:

gT = ST−tgt +
∑
j

√
cj
∫ T

t
ST−uσ(u,gu)ejdβ

j
u. (14)

Example with one noise factor:

gT(x) = gt(T − t + x) +
√
c1

∫ T

t
σ (u,gu(T − t + x)) e1(T − t + x)dβ1

u .
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THE TWO-STEP APPROACH [Benth, Detering, L. (2021)]
Let λ ∈ Λ ⊂ RM (e.g. λ = (K , T , T1, T2)) be some contract specifications, and
{Πi}Ni=1 some market observed prices {Πi}Ni=1 corresponding to {λi}Ni=1. Then:

1. We train a neural network
N (·,P) : I → RN

+

to approximate the pricing functional Πt = Πt(λ, θ):

P̂ ∈ argmin
P

1
Ntrain

1
N

Ntrain∑
j=1

N∑
i=1

(
N (θj,P)i − Πt(θj, λi)

)2
.

2. We use N̂ (θ) := N (θ, P̂) in calibration to fit market data {Πi}Ni=1:

θ̂ ∈ argmin
θ∈I

1
N

N∑
i=1

(
N̂ (θ)i − Πi

)2
.

We still need to simulate trajectories of gt to create the training set in step 1:
we use the training routine proposed by [Benth et al. (2022)].
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CONCLUSIONS

I We study local-volatility models in the Filipović space for instantaneous
forward curves;

I This requires particular care because of the nature of the Filipović norm;

I These serve as models for pricing options in the energy markets;

I With the [Benth et al. (2022)] routine, we train a neural network to
approximate the pricing functional;

I Adapting [Benth, Detering, L. (2021)] we use the network for model
calibration;

I In the next episode: calibration accuracy and tests on the smile on real
option data.

Thanks for the attention!
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