
On the impact of tax uncertainty on investment into
carbon abatement technologies

Rüdiger Frey ruediger.frey@wu.ac.at

joint work with Katia Colaneri, Tor Vergata and Verena Köck, WU
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Introduction

Introduction

Carbon taxes are a key policy tool for fighting climate change
(e.g. Nordhaus [1993], Golosov et al. [2014])

Most of this work is concerned with optimal tax schemes for an
efficient emission reduction (Nordhaus [1993], Golosov et al. [2014])

In reality (environmental-) tax policy is a political decision that is
affected by many factors such as political sentiment, outcome of
elections, lobbying or international climate policy, so that future tax
rates are stochastic

In fact Climate Policy Uncertainty and its impact on asset prices and
investor decisions has become an active research topic
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Introduction

Our contribution

We study how uncertainty about carbon tax rates affects investment
strategy of a electricity producer who can invest in abatement
technology

Investments are irreversible and subject to transaction cost ⇒
Producer is faced with a dynamic control problem.

Two approaches for tax uncertainty:

i) taxes as a stochastic process with fixed dynamics, namely a finite state
Markov chain (risk)

ii) taxes as result of a differential game between producer and “nature”
(uncertainty)

Mathematical contribution. Analysis of the control problem and the
differential game

Financial contribution . Numerical experiments on the impact of tax
uncertainty and of the structure of production and abatement
technology on investment and emissions.
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Introduction

Related work

Fuss et al. [2008] Numerical analysis of the impact of policy
uncertainty on investment in abatement technology in a real options
model via discrete time dynamic programming; a related study by the
International Energy Agency is Yang et al. [2008]

Empirical studies on impact of carbon taxes include Aghion et al.
[2016] and Martinsson et al. [2022].

There is also an empirical literature on climate policy uncertainty and
climate policy uncertainty indices

Optimal regulation: Aid and Biagini [2023] and many more
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The model General structure

The model

Consider a stylized electricity producer, who decides on instantaneous
production qt ≥ 0 and on investment into abatement technology.

Producer pays emission taxes represented by tax rate τ .

She is a price taker (merit order system). Instantaneous profit:

Π(q, I , τ, y) = p(y)q − C (q, I , τ) + ν0(q)τ (1)

Here y is some exogenous factor, p(y) is the price and C (q, I , τ, y)
the cost function for producing q units of electricity, given investment
value I and tax rate τ . ν0 models a tax rebate.

C is increasing and convex in q, ν is increasing and concave.

Producer chooses qt to maximise instantaneous profit; optimal profit:

Π∗(I , τ, y) = max
q≥0

Π(q, I , τ, y). (2)

Often we consider the simpler case where q is fixed or where factor
process is not there.
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The model General structure

Investment in abatement technology

Producer chooses rate γ = (γt)t≥0 at which she invests in abatement
technology. For a given strategy γ, the investment value I has
dynamics

It = I0 +

∫ t

0
γsds −

∫ t

0
δIsds + σWt , t ≥ 0 (3)

where W is a Brownian motion, 0 ≤ δ < 1 the depreciation rate and
σ ≥ 0 (typically small).

We assume γt ≥ 0 for all t (irreversible investment); A denotes the
set of admissible strategies.

Investment is subject to buildup- or transaction cost given by κγ2

(penalization of rapid build up of abatement technology).

Investment is financed by borrowing at interest rate r > 0
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The model General structure

Optimal investment problem

Goal of the producer: choose strategy γ to maximize total profits up
to time T > 0, that is

max
γ∈A

Et

[∫ T

t

(
Π∗(Is , τs ,Ys)− γs − κγ2s

)
e−r(s−t)ds + e−r(T−t)h(IT )

]
(4)

h(·) accounts for the residual value of the abatement technology at
time T .

We will solve this problem (numerically) via dynamic programming
equation
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The model Examples

Production function: filter technology

Let X be the input (say, coal) with price c̄ per unit.

Amount of emission (CO2) per unit of X is e0. Filters ⇒ emissions
are reduced by e1(I ).

Total emission: e(X , I ) = X (e0 − e1(I )), where abatement function
e1(·) is increasing, concave and bounded by e0

Q(X ) is electricity that can be produced from X units coal, for Q(·)
increasing and concave.

This gives the following cost function for producing q units of
electricity

C (q, I , τ) = Q−1(q)(c̄ + τ(e0 − e1(I ))), (5)
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The model Examples

Example 2: Two technologies

The energy producer has access to two production technologies, e.g.
coal or gas and solar panels.

Gas costs cb(y) per unit and emits eb tons of CO2 per unit.

Qb(X ) electricity produced with X units of gas.

Green production has zero marginal cost, does not emit CO2.

cg I electricity produced green for given investment I .

Operating cost for green technology C0(I )

C (q, I , τ) =

{
C0(I ) if q − cg I ≤ 0,

C0(I ) + (cb(y) + ebτ)Q
−1
b (q − cg I ) if q − cg I > 0,

(6)
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The model Examples

Tax rate as finite state Markov chain

Tax process (τt)t≥0 is a finite state Markov chain with values
0 ≤ τ1 < · · · < τK and switching intensities gij = gij(y) ≥ 0
In the numerical experiments we consider examples with 2 states:

Random tax increase. Here τ0 = τ1 but producer expects τ to
increase to τ2 at random later state, eg. as government implements
international climate treaties

Tax reversal. Here τ is initially in the high-tax state τ2, but producer
expects a correction (jump to τ1 at a later date) perhaps due to a
change in government (“Trump after Biden”);
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The model Examples

The tax scenarios
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Figure: Tax policies. black deterministic tax rate, green random tax rate. In each

panel the quantity E
[∫ T

0
τsds

]
is identical for random and deterministic tax
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The control problem

Control problem and value function

Problem (4) is a stochastic control problem with value function
V i (t, I , y) := V (t, I , τ i , y), 1 ≤ i ≤ K . The associated HJB equation is a
PDE system of the form

v it +Π∗(I , τi , y)− rv i +
K∑
j=1

[v j(t, I )− v i (t, I ]gij(t) + σ2v iII (7)

+ LY v i + sup
0≤γ

{v iI (γ − δI )− (γ + κγ2)} = 0, (8)

with the final condition v i (T , I ,Y ) = h(I ). Here LY is the generator of
the factor process Y (a diffusion)

Optimal strategy. Assume V is a classical solution. Then optimal
investment rate is γ∗(t, I , τ, y) = (VI (t, I , τ, y)− 1)+/2κ (Trade-off
between expected future profits and current cost.)
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The control problem

Mathematical results

Assumptions

i. Π∗(I , τ, y) is continuous in (I , τ, y), increasing, and
Lipschitz-continuous in I , y , uniformly in τ ,

ii. h(I ) is increasing and Lipschitz.

Assumptions on Π∗ cannot simply be imposed (unless if q is fixed) but can
be verified under Lipschitz conditions on the data of the problem

Proposition. Under these assumptions, v is increasing, Lipschitz in I and y
and Hölder in t and the unique viscosity solution of the HJB equation (7).
Moreover, the optimal investment rate is bounded.

Proof is based on results from Pham [1998] and on comparison arguments
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The control problem

Mathematical analysis continued

For σ = 0 we have examples for strict viscosity solutions

If σ > 0 and if LY is strictly elliptic with sufficiently regular
components we can show existence of a classical solution. Proof is
based on a fixed point argument and on results for quasilinear
parabolic equations from Ladyzenskaja et al. [1968].

In general we need numerical techniques to solve the PDE system.

We used the deep splitting method (an approximation method for
semilinear P(I)DEs using backward induction and deep neural
networks) studied eg. in Beck et al. [2021], Frey and Köck [2022],
Germain et al. [2022].

Method performs well, but numerical experiments time consuming
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Numerical experiments

Numerical experiments: Setup and overview

Throughout we consider the case where q is equal to q̄ = 10,
δ = 0.05, σ = 0.05, T = 15.

Filter technology. Profit is increasing and concave in I , residual value
h(I ) = 0;

Tax rate: 2 states τ1 = 0, τ2 > 0, transition intensity
g12 = 0.25, g21 = 0 (random tax increase) resp. g21 = g12 = 0.25

We show results on

Optimal investment rate for different buildup cost κ

Comparison of average investment and emission reduction to a
deterministic scenario with same average tax rate for tax reversal and
random tax increase scenario
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Numerical experiments

Optimal investment for tax increase scenario (filter)
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Figure: Optimal investment I ∗(t) for tax increase; left: random tax, right:
constant tax. Note that there is a substantial amount of investment already
before the jump in τ (hedging)
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Numerical experiments

Optimal investment for tax reversal scenario (filter)
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Figure: Optimal investment I ∗(t) for tax reversal; left: random tax, right:
constant tax.
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Numerical experiments

Average emissions (filter)

κ random constant

0.2 5.45 3.75
0.5 8.90 6.76

κ random constant

0.2 4.25 3.83
0.5 7.20 6.07

Table: left: random tax increase; right: tax reversal. The constant tax leads on
average to lower emissions in both cases.

For the two technology case there is no clear ordering of the different tax
policies.
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Numerical experiments

Tax uncertainty and differential game

Climate policy variables are the result of political processes. ⇒
difficult to come up with ‘correct’ probabilistic model for tax
dynamics, that is producer faces uncertainty (as opposed to risk).

we therefore model optimal investment under tax uncertainty as
stochastic differential game between producer and a malevolent
opponent (nature).

Producer chooses investment rate γ ∈ A and production q to
maximize profits; nature chooses a worst case tax process τ to
minimize profits. ⇒ Reward function

J(t, I , y , τ ,γ,q) = Et

[ ∫ T

t

(
Π(qs , Is , τs ,Ys)− γs − κγ2

s

+ ν0(qs)τs + ν1(τs − τ̄(s))2
)
e−r(s−t)ds + h(IT )e

−r(T−t)

]
,

where ν1(·) penalizes deviation from anticipated tax plan.
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Numerical experiments

The Bellmann-Isaacs equation

Define g(q, τ ; I , y) = Π(q, I , τ, y) + ν0(q)τ + ν1(τ − τ̄(t))2

We show that g admits a unique saddle point (q∗, τ∗) for every I , y .
Denote by G (I , y) = g(q∗(I , y), τ∗(I , y), I , y) the corresponding
saddle value. Then the Bellman Isaacs equation for the game reduces
to the following standard HJB equation

ut + G (I , y) + LY u +
σ2

2
uII + sup

γ≥0

(
γuI − γ − κγ2

)
= ru . (9)

If σ2 > 0 (and some other regularity conditions) this equation has a
unique classical solution.

Equilibrium strategies are given by q∗t = q∗(It ,Yt), τ
∗
t = τ∗(It ,Yt),

0 ≤ t ≤ T and γ∗t = (uI (t, It ,Yt)− 1)+/2κ, 0 ≤ t ≤ T
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Numerical experiments

Special cases and qualitative properties of τ ∗

ν0 ≡ 0 ⇒ τ∗(q) > τ̄ , that is without rebate tax uncertainty leads to
high expected taxes

full abatement (C1 ≡ 0) and ν0 > 0 ⇒ τ∗(q) < τ̄

little abatement (C1 > ν0) ⇒ τ∗(q) > τ̄

The anticipated produced amount q∗ is lower then if taxes are equal
to τ̄ .
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Numerical experiments

Summary and Conclusion

For the filter technology random tax seems to be worse than
deterministic benchmark;

Results for the case with divisible investment (stochastic control)
complement the real options approach of Fuss et al. [2008]. In
particular, we see that there is hedging and buildup cost matter a lot.

Further work

More simulations: differential game, two technologies, rebate etc.
Cost of capital: higher interest rate for borrowing than for investing
Equilibrium considerations (many small producers ⇒ mean-field game)
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