On the impact of tax uncertainty on investment into carbon abatement technologies

Rüdiger Frey ruediger.frey@wu.ac.at joint work with Katia Colaneri, Tor Vergata and Verena Köck, WU

Vienna University of Economics and Business (WU)

WPI Vienna, September 2023

< ロ > < 同 > < 回 > < 回 >

1/22

# Introduction

- Carbon taxes are a key policy tool for fighting climate change (e.g. Nordhaus [1993], Golosov et al. [2014])
- Most of this work is concerned with optimal tax schemes for an efficient emission reduction (Nordhaus [1993], Golosov et al. [2014])
- In reality (environmental-) tax policy is a political decision that is affected by many factors such as political sentiment, outcome of elections, lobbying or international climate policy, so that future tax rates are stochastic
- In fact Climate Policy Uncertainty and its impact on asset prices and investor decisions has become an active research topic

# Our contribution

- We study how uncertainty about carbon tax rates affects investment strategy of a electricity producer who can invest in abatement technology
- Investments are irreversible and subject to transaction cost ⇒ Producer is faced with a *dynamic control problem*.
- Two approaches for *tax uncertainty*:
  - i) taxes as a stochastic process with fixed dynamics, namely a finite state Markov chain (risk)
  - ii) taxes as result of a differential game between producer and "nature" (uncertainty)
- Mathematical contribution. Analysis of the control problem and the differential game
- Financial contribution . Numerical experiments on the impact of tax uncertainty and of the structure of production and abatement technology on investment and emissions.

#### Related work

- Fuss et al. [2008] Numerical analysis of the impact of policy uncertainty on investment in abatement technology in a real options model via discrete time dynamic programming; a related study by the International Energy Agency is Yang et al. [2008]
- Empirical studies on impact of carbon taxes include Aghion et al. [2016] and Martinsson et al. [2022].
- There is also an empirical literature on climate policy uncertainty and climate policy uncertainty indices
- Optimal regulation: Aid and Biagini [2023] and many more

# The model

- Consider a stylized electricity producer, who decides on *instantaneous* production q<sub>t</sub> ≥ 0 and on *investment* into abatement technology.
- Producer pays emission taxes represented by tax rate  $\tau$ .
- She is a price taker (merit order system). Instantaneous profit:

$$\Pi(q, I, \tau, y) = p(y)q - C(q, I, \tau) + \nu_0(q)\tau$$
(1)

Here y is some exogenous factor, p(y) is the *price* and  $C(q, I, \tau, y)$  the *cost function* for producing q units of electricity, given investment value I and tax rate  $\tau$ .  $\nu_0$  models a tax rebate.

- C is increasing and convex in q,  $\nu$  is increasing and concave.
- Producer chooses q<sub>t</sub> to maximise instantaneous profit; optimal profit:

$$\Pi^{*}(I,\tau,y) = \max_{q \ge 0} \Pi(q,I,\tau,y).$$
(2)

• Often we consider the simpler case where *q* is fixed or where factor process is not there.

# Investment in abatement technology

 Producer chooses rate γ = (γ<sub>t</sub>)<sub>t≥0</sub> at which she invests in abatement technology. For a given strategy γ, the investment value *I* has dynamics

$$I_t = I_0 + \int_0^t \gamma_s \mathrm{d}s - \int_0^t \delta I_s \mathrm{d}s + \sigma W_t, \quad t \ge 0$$
(3)

where W is a Brownian motion,  $0 \le \delta < 1$  the depreciation rate and  $\sigma \ge 0$  (typically small).

- We assume  $\gamma_t \ge 0$  for all t (irreversible investment); A denotes the set of admissible strategies.
- Investment is subject to buildup- or transaction cost given by  $\kappa \gamma^2$  (penalization of rapid build up of abatement technology).
- Investment is financed by borrowing at interest rate r > 0

# Optimal investment problem

• Goal of the producer: choose strategy  $\gamma$  to maximize total profits up to time  $\mathcal{T}>$  0, that is

$$\max_{\gamma \in \mathcal{A}} \mathbb{E}_{t} \left[ \int_{t}^{T} \left( \Pi^{*}(I_{s}, \tau_{s}, Y_{s}) - \gamma_{s} - \kappa \gamma_{s}^{2} \right) e^{-r(s-t)} \mathrm{d}s + e^{-r(T-t)} h(I_{T}) \right]$$
(4)

- $h(\cdot)$  accounts for the residual value of the abatement technology at time T.
- We will solve this problem (numerically) via dynamic programming equation

#### Examples

# Production function: filter technology

- Let X be the input (say, coal) with price  $\bar{c}$  per unit.
- Amount of emission (CO<sub>2</sub>) per unit of X is e<sub>0</sub>. Filters ⇒ emissions are reduced by e<sub>1</sub>(1).
- Total emission:  $e(X, I) = X(e_0 e_1(I))$ , where abatement function  $e_1(\cdot)$  is increasing, concave and bounded by  $e_0$
- Q(X) is electricity that can be produced from X units coal, for  $Q(\cdot)$  increasing and concave.
- This gives the following cost function for producing *q* units of electricity

$$C(q, I, \tau) = Q^{-1}(q)(\bar{c} + \tau(e_0 - e_1(I))), \tag{5}$$

# Example 2: Two technologies

- The energy producer has access to two production technologies, e.g. coal or gas and solar panels.
- Gas costs  $c_b(y)$  per unit and emits  $e_b$  tons of  $CO_2$  per unit.
- $Q_b(X)$  electricity produced with X units of gas.
- Green production has zero marginal cost, does not emit CO<sub>2</sub>.
- $c_g I$  electricity produced green for given investment I.
- Operating cost for green technology  $C_0(I)$

$$C(q, I, \tau) = \begin{cases} C_0(I) & \text{if } q - c_g I \le 0, \\ C_0(I) + (c_b(y) + e_b \tau) Q_b^{-1}(q - c_g I) & \text{if } q - c_g I > 0, \end{cases}$$
(6)

# Tax rate as finite state Markov chain

**Tax process**  $(\tau_t)_{t\geq 0}$  is a finite state Markov chain with values  $0 \leq \tau^1 < \cdots < \tau^K$  and switching intensities  $g_{ij} = g_{ij}(y) \geq 0$ In the numerical experiments we consider examples with 2 states:

- Random tax increase. Here  $\tau_0 = \tau^1$  but producer expects  $\tau$  to increase to  $\tau^2$  at random later state, eg. as government implements international climate treaties
- Tax reversal. Here  $\tau$  is initially in the high-tax state  $\tau^2$ , but producer expects a correction (jump to  $\tau^1$  at a later date) perhaps due to a change in government ("Trump after Biden");

#### The tax scenarios



Figure: Tax policies. **black** deterministic tax rate, **green** random tax rate. In each panel the quantity  $\mathbb{E}\left[\int_{0}^{T} \tau_{s} ds\right]$  is identical for random and deterministic tax

# Control problem and value function

Problem (4) is a stochastic control problem with value function  $V^i(t, I, y) := V(t, I, \tau^i, y), 1 \le i \le K$ . The associated HJB equation is a PDE system of the form

$$v_{t}^{i} + \Pi^{*}(I, \tau_{i}, y) - rv^{i} + \sum_{j=1}^{K} [v^{j}(t, I) - v^{i}(t, I)g_{ij}(t) + \sigma^{2}v_{II}^{i}$$
(7)  
+  $\mathcal{L}^{Y}v^{i} + \sup_{0 \leq \gamma} \{v_{I}^{i}(\gamma - \delta I) - (\gamma + \kappa\gamma^{2})\} = 0,$ (8)

with the final condition  $v^i(T, I, Y) = h(I)$ . Here  $\mathcal{L}^Y$  is the generator of the factor process Y (a diffusion)

**Optimal strategy.** Assume V is a classical solution. Then optimal investment rate is  $\gamma^*(t, I, \tau, y) = (V_I(t, I, \tau, y) - 1)^+/2\kappa$  (Trade-off between expected future profits and current cost.)

# Mathematical results

#### Assumptions

- i.  $\Pi^*(I, \tau, y)$  is continuous in  $(I, \tau, y)$ , increasing, and Lipschitz-continuous in I, y, uniformly in  $\tau$ ,
- ii. h(I) is increasing and Lipschitz.

Assumptions on  $\Pi^*$  cannot simply be imposed (unless if q is fixed) but can be verified under Lipschitz conditions on the data of the problem

Proposition. Under these assumptions, v is increasing, Lipschitz in I and y and Hölder in t and the unique viscosity solution of the HJB equation (7). Moreover, the optimal investment rate is bounded.

Proof is based on results from Pham [1998] and on comparison arguments

# Mathematical analysis continued

- For  $\sigma = 0$  we have examples for strict viscosity solutions
- If σ > 0 and if L<sup>Y</sup> is strictly elliptic with sufficiently regular components we can show existence of a classical solution. Proof is based on a fixed point argument and on results for quasilinear parabolic equations from Ladyzenskaja et al. [1968].
- In general we need numerical techniques to solve the PDE system.
- We used the deep splitting method (an approximation method for semilinear P(I)DEs using backward induction and deep neural networks) studied eg. in Beck et al. [2021], Frey and Köck [2022], Germain et al. [2022].
- Method performs well, but numerical experiments time consuming

# Numerical experiments: Setup and overview

- Throughout we consider the case where q is equal to  $\bar{q} = 10$ ,  $\delta = 0.05, \sigma = 0.05, T = 15$ .
- Filter technology. Profit is increasing and concave in I, residual value h(I) = 0;
- Tax rate: 2 states  $\tau^1 = 0$ ,  $\tau^2 > 0$ , transition intensity  $g_{12} = 0.25$ ,  $g_{21} = 0$  (random tax increase) resp.  $g_{21} = g_{12} = 0.25$

We show results on

- Optimal investment rate for different buildup cost  $\kappa$
- Comparison of average investment and emission reduction to a deterministic scenario with same average tax rate for tax reversal and random tax increase scenario

# Optimal investment for tax increase scenario (filter)



Figure: Optimal investment  $I^*(t)$  for tax increase; left: random tax, right: constant tax. Note that there is a substantial amount of investment already before the jump in  $\tau$  (hedging)

# Optimal investment for tax reversal scenario (filter)



Tax reversal scenario ( $\tau_0 = 0.2$ )

Figure: Optimal investment  $I^*(t)$  for tax reversal; left: random tax, right: constant tax.

# Average emissions (filter)

| $\kappa$ | random | constant | $\kappa$ | random | constant |
|----------|--------|----------|----------|--------|----------|
| 0.2      | 5.45   | 3.75     | 0.2      | 4.25   | 3.83     |
| 0.5      | 8.90   | 6.76     | 0.5      | 7.20   | 6.07     |

Table: left: random tax increase; right: tax reversal. The constant tax leads on average to lower emissions in both cases.

For the two technology case there is no clear ordering of the different tax policies.

#### Tax uncertainty and differential game

- Climate policy variables are the result of political processes. ⇒ difficult to come up with 'correct' probabilistic model for tax dynamics, that is producer faces uncertainty (as opposed to risk).
- we therefore model optimal investment under tax uncertainty as stochastic differential game between *producer* and a malevolent opponent (*nature*).
- Producer chooses investment rate γ ∈ A and production q to maximize profits; nature chooses a worst case tax process τ to minimize profits. ⇒ Reward function

$$J(t, I, y, \tau, \gamma, \boldsymbol{q}) = \mathbb{E}_t \left[ \int_t^T \left( \Pi(q_s, I_s, \tau_s, Y_s) - \gamma_s - \kappa \gamma_s^2 + \nu_0(q_s)\tau_s + \nu_1(\tau_s - \bar{\tau}(s))^2 \right) e^{-r(s-t)} \mathrm{d}s + h(I_T) e^{-r(T-t)} \right],$$

where  $\nu_1(\cdot)$  penalizes deviation from anticipated tax plan.

# The Bellmann-Isaacs equation

- Define  $g(q, \tau; I, y) = \Pi(q, I, \tau, y) + \nu_0(q)\tau + \nu_1(\tau \bar{\tau}(t))^2$
- We show that g admits a unique saddle point  $(q^*, \tau^*)$  for every I, y. Denote by  $G(I, y) = g(q^*(I, y), \tau^*(I, y), I, y)$  the corresponding saddle value. Then the Bellman Isaacs equation for the game reduces to the following standard HJB equation

$$u_t + G(I, y) + \mathcal{L}^Y u + \frac{\sigma^2}{2} u_{II} + \sup_{\gamma \ge 0} \left( \gamma u_I - \gamma - \kappa \gamma^2 \right) = r u \,. \tag{9}$$

- If σ<sup>2</sup> > 0 (and some other regularity conditions) this equation has a unique classical solution.
- Equilibrium strategies are given by  $q_t^* = q^*(I_t, Y_t), \tau_t^* = \tau^*(I_t, Y_t), 0 \le t \le T$  and  $\gamma_t^* = (u_I(t, I_t, Y_t) 1)^+ / 2\kappa, 0 \le t \le T$

# Special cases and qualitative properties of $au^*$

- $\nu_0 \equiv 0 \Rightarrow \tau^*(q) > \bar{\tau}$ , that is without rebate tax uncertainty leads to high expected taxes
- full abatement (  $C_1\equiv 0)$  and  $u_0>0 \Rightarrow au^*(q)<ar{ au}$
- little abatement (  $\mathcal{C}_1 > 
  u_0) \Rightarrow au^*(q) > ar{ au}$
- The anticipated produced amount  $q^*$  is lower then if taxes are equal to  $\bar{\tau}$ .

# Summary and Conclusion

- For the filter technology random tax seems to be worse than deterministic benchmark;
- Results for the case with divisible investment (stochastic control) complement the real options approach of Fuss et al. [2008]. In particular, we see that there is *hedging* and buildup cost matter a lot.
- Further work
  - More simulations: differential game, two technologies, rebate etc.
  - Cost of capital: higher interest rate for borrowing than for investing
  - Equilibrium considerations (many small producers  $\Rightarrow$  mean-field game)

- P. Aghion, A. Dechezleprêtre, D. Hémous, R. Martin, and J. Van Reenen. Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. *Journal of Political Economy*, 124(1): 1–51, 2016. doi: 10.1086/684581.
- R. Aid and S. Biagini. Optimal dynamic regulation of carbon emissions market. *Mathematical Finance*, 33(1):80–115, 2023.
- Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Ariel Neufeld. Deep splitting method for parabolic PDEs. *SIAM Journal on Scientific Computing*, 43(5):A3135–A3154, 2021.
- Rüdiger Frey and Verena Köck. Deep neural network algorithms for parabolic pides and applications in insurance and finance. *Computation*, 10, 2022. https://doi.org/10.3390/computation10110201.
- S. Fuss, J. Szolgayova, and M. Obersteiner. Investment under market and climate policy uncertainty. *Applied Energy*, 85:708–721, 2008.
- Maximilien Germain, Huyen Pham, and Xavier Warin. Approximation error analysis of some deep backward schemes for nonlinear pdes. *SIAM Journal of Scientific Computing*, 22:A28 –A56, 2022

- M. Golosov, J. Hassler, P. Krusell, and A. Tsyvinski. Optimal taxes on fossil fuel in general equilibrium. *Econometrica*, 82(1):41–88, 2014.
- O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva. *Linear and Quasilinear Equations of Parabolic Type*. American Mathematical Society, Providence, Rhode Island, 1968.
- G. Martinsson, P. Stromberg, L. aszlo Sajtos, and C. Thomann. Carbon pricing and firm-level CO2 abatement: Evidence from a quarter of a century-long panel. working paper, European Corporate Governance Institute, 2022. Available at SSRN: https://ssrn.com/abstract=4206508 or http://dx.doi.org/10.2139/ssrn.4206508.
- W. Nordhaus. Optimal greenhouse-gas reduction and tax policy in the 'DICE' model. *The American Economic Review*, 82:313–317, 1993.
- Huyên Pham. Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. *Journal of Mathematical Systems, Estimation and Control*, 8:1–27, 1998.
- M. Yang, W. Blyth, and R. Bradley. Climate policy uncertainty and investment risk. Technical report, International Energy Association, Paris, 2008.