M. R. Grasselli

Mathematics and Statistics - McMaster University

Joint work with Ben Bolker, Yicheng Chen, Emma Holmes (Kroell), Daniel Presta

Workshop on Stochastics, Statistics, Machine Learning and their Applications to Sustainable Finance and Energy Markets Wolfgang Pauli Institute, September 14, 2023

Physical risks

E.g.: losses from extreme events were \$ 380 billion in 2017 and are estimated by Allianz (2018) to reach annual average of \$1 trillion within 10 years

Transition risks

E.g.: stranded assets, portfolio decarbonization, changes in consumer sentiment.

Growth in number of divestment commitments:

Growth in total assets of divesting institutions:

-Introduction

-Climate Risk

Mapping into Financial Risk Categories (BIS)

Figure 1: Financial risks from climate risk drivers

-Introduction

Integrated Assessment Models

Integrated Assessment Models

- Initially developed to estimate the impact of economic development on the environment.
- Most famous example is The Limits to Growth model published in 1972 by the Club of Rome.
- Current models use of "sophisticated" economics to assess the impact of climate change on the economy.
- Most famous example is the DICE (Dynamic Integrated Climate-Economy) model developed by William Nordhaus in 1992.
- Relies on welfare maximization, general equilibrium, and rational expectations.
- Alternative stock-flow consistent models include COPING (medium scale) and DEFINE (large scale).

-Introduction

Integrated Assessment Models

Dynamic Integrated Climate-Economy (DICE)

-Introduction

Integrated Assessment Models

"Optimal" global warming according to Nordhaus

Temperature trajectories in different policies

Slide 6 in Nordhaus's lecture, showing the "optimal" temperature path peaking at a 4°C increase by 2150

-Introduction

Integrated Assessment Models

Hothouse Earth bifurcation (Steffen et al 2018)

Fig. 2. Stability landscape showing the pathway of the Earth System out of the Holocene and thus, out of the glacial-interglacial limit cycle to its present position in the hotter Anthropocene. The fork in the read in Fig. 1 is shown here as the two divergent pathways of the Earth System is on a Hothouse Earth pathway driven by human emissions of greenhouse gases and biosphere degradation toward a planetary threshold at ~2°C (horizontal broken line at 2°C in Fig. 1), beyond which the system follows an essentially irreversible pathway driven by intrinsic biogeophysical feedbacks. The other pathway leads to Stabilized Earth, a pathway of Earth System stewardship guided by human-created feedbacks to a quasistable, human-maintained basin of attraction.

-Introduction

Integrated Assessment Models

Comparing LtG with Data (Turner 2008)

Introduction

Integrated Assessment Models

Comparing LtG with Data (Turner 2014)

-Introduction

Integrated Assessment Models

Comparing DICE with Data (Milner 2016)

Sobol indices

• Let
$$Y = f(X_1, \ldots, X_n)$$

Define

$$S_{i} = \frac{V[E(Y|X_{i})]}{V[Y]}$$
$$S_{ij} = \frac{V[E(Y|X_{i}, X_{j})]}{V[Y]} - S_{i} - S_{j}$$
$$\vdots$$
$$S_{i}^{T} = 1 - \frac{V[E(Y|X_{\sim i})]}{V[Y]}$$

Global Sensitivity

Sobol index ranking for DICE model

Variable Rank by Total Index	GDP	Emission	Temperature
1	Growth rate	Equilibrium temp impact	Equilibrium temp impact
2	Price mark-up	Growth rate	Growth rate
3	Effect of inflation on wages	Damage function parameter (exponential)	Damage function parameter (exponential)
4	Inflation relaxation parameter	Damage function parameter (quadratic)	Damage function parameter (quadratic)
5	Equilibrium temp impact	Carbon cycle up	Carbon cycle up

Global Sensitivity

Sobol index ranking - common parameters

	DICE 1: elasmu	
COPING 1: Inflation relaxtion parameter COPING 2: Price Markup COPING 3: Effect of inflation on	1. Growth Rate 2. Equilibrium Temperature Sensitivity 3. Carbon Cycle up	DEFINE 1: Change of disposable income DEFINE 2: Change of autonomous investment
wages	4. Damage Parameter (exponential) 5. Damage parameter(quadratic,	

Backtesting Methodology

- Set initial conditions for all models in 1992.
- Re-estimate economic parameters using time series from 1962 to 1992.
- Set physical parameters to current (i.e. 2022) values.
- Select the n (e.g 5) most important parameters for each model according to total Sobol index.
- Simulate each model with parameters sampled from appropriate distributions.

Backtesting

Temperature backtesting

Backtesting

Emissions backtesting

GDP backtesting

Forward scenarios

Forward scenario methodology

- Set initial conditions for all models in 2022.
- Re-estimate economic parameters using time series from 1992 to 2022.
- Set physical parameters to current (i.e. 2022) values.
- Select the n (e.g. 5) most important parameters for each model according to total Sobol index.
- Simulate each model with parameters sampled from appropriate distributions using BAU and preferred policy versions.

-Forward scenarios

Temperature predictions

-Forward scenarios

Emissions predictions

-Forward scenarios

GDP predictions

The COPING Model

	Households		Firms	Banks	Sum
Balance Sheet					
Capital stock			pK		pK
Deposits	M^h		M^{f}	-M	
Loans			-L	L	
Equities	$E^b + E^f$		$-E^{f}$	$-E^{b}$	
Sum (net worth)	X^h		X^{f}	X^b	X
Transactions		current	capital		
Consumption	-pC	pC			
Investment		pI	-pI		
Accounting memo [GDP]		[pY]			
Wages	W	-W			
Dividends	Di + r(L - M)		-Di	-r(L - M)	
Interests on loans		-rL		rL	
Interests on deposits	$+rM^{h}$	$+rM^{f}$		-rM	
Financial Balances	S^h	П	-pI - Di	0	
Flow of funds					
Gross Fixed Capital Formation			pI		pI
Change in Deposits	\dot{M}^h		\dot{M}^{f}	$-\dot{M}$	
Change in loans			$-\dot{L}$	Ĺ	
Change in equities	$\dot{E}^{f} + \dot{E}^{b}$		$-\dot{E}^{f}$	$-\dot{E}^{b}$	
Column sum	S^h		$\Pi - Di$	0	pI
Change in net worth	$\dot{X}^h = S^h$	$\dot{X}^{f} = \Pi$	$-Di + \left[\dot{p} - (\delta + \mathbf{D}^{K} + \frac{G}{\nu})p\right]K$	$\dot{X}^b = 0$	$\dot{X} = pI + [\dot{p} - (\delta + \mathbf{D}^{K} + \frac{G}{\nu})p]K$

Table 1: Balance sheet, transactions, and flow of funds in the economy

Detailed sensitivity of COPING model

Model Schematic

Detailed sensitivity of COPING model

Example: convergence to the interior equilibrium in a Keen model

Example: explosive debt in a Keen model

Detailed sensitivity of COPING model

Basin of attraction of interior equilibrium - BGH (2021)

Detailed sensitivity of COPING model

Dependence on inflation parameters - BGH (2021)

(d) (0.9, 0.9, 0.3)

(e) (0.675, 0.578, 1.53)

Detailed sensitivity of COPING model

Logistic regression and partial rank correlation - BGH (2021)

Detailed sensitivity of COPING model

Classification tree - economic model (no climate)

Classification tree, no climate

Detailed sensitivity of COPING model

Classification tree - full model

Classification tree with climate

Detailed sensitivity of COPING model

Regression tree - economic model (no climate)

Detailed sensitivity of COPING model

Regression tree - full model

Regression tree with climate

Detailed sensitivity of COPING model

Classification Random Forest - economic model (no climate)

Random forest (classification) variable importance, no climate

Classification Random Forest - full model

Random forest (classification) variable importance with climate

Regression Random Forest - economic model (no climate)

Random forest (regression) variable importance, no climate

Regression Random Forest - full model

Random forest (regression) variable importance with climate

Detailed sensitivity of COPING model

Heat map - full model

Conclusions

- Climate change is the most formidable challenge faced by the human race
- Traditional macroeconomics is ill-equipped to contribute to it
- Integration of dynamic models with disequilibrium and slowly adjusting variables is needed
- Finance is likely to play a fundamental role in the low-carbon transition
- Understanding parameter sensitivity of the models is key to comparing past performance and assessing predictions.
- Thank you.