Adaptive Probabilistic Forecasting of Electricity Net-Load

Joseph de Vilmarest, Jethro Browell, Matteo Fasiolo, Yannig Goude, Olivier Wintenberger

Wolfgang Pauli Institute, September 12, 2023
176 University
of Glasgow

- Net-load: consumption - wind and solar production.

Controllable production units need to meet the net-load and not the raw consumption.

- Adaptive. A more unstable environment:
- Demand volatility is growing.
- Renewable production is increasing.
- Consumption patterns are changing.
- Probabilistic.
- Probabilistic forecasts are needed to set reserves.
- Renewable production adds variability and uncertainty.

Variability for wind generation in Europe

"Simulation of a wind fleet of 280 GW of installed capacity, well distributed across the European system, showed that in winter the daily average power generation from wind varies between 40 and 170 GW depending on wind conditions"

Technical and economic analysis of the European electricity system with 60% res, Alain Burtin and Vera Silva, EDF R\&D, 2015.

Variability for solar generation in Europe

- Important seasonality.
- More predictable.

Technical and economic analysis of the European electricity system with 60% res, Alain Burtin and Vera Silva, EDF R\&D, 2015.

Regional Net-load Forecasting

We forecast $y_{t} \in \mathbb{R}$. Our data set: 14 time series.

1: N Scotland (P) 2: S Scotland (N) 3: NE England (F) 4: Yorkshire (M)
5: NW England (G)
6: Merseyside \& N Wales (D
7: S Wales (K)
8: W Midlands (E)
9: E Midlands (B) 10: E England (A)
11: London (C)
12: SE England (J)
13: S England (H) 14: SW England (L)

Explanatory Variables: Calendar

Region A, 3 PM

Daily Profiles

Explanatory Variables: Meteorology

Region A, 3 PM

Region P, 3 PM

Region A, 3 PM

Region P, 3 PM

Objective: probabilistic forecasting

We forecast y_{t} given x_{t}. In what sense ?

- Mean forecast: $\hat{y}_{t}=\mathbb{E}\left[y_{t} \mid x_{t}\right]$.

Equivalent to the minimum of $\mathbb{E}\left[\left(y_{t}-\hat{y}_{t}\right)^{2} \mid x_{t}\right]$.

Objective: probabilistic forecasting

We forecast y_{t} given x_{t}. In what sense ?

- Mean forecast: $\hat{y}_{t}=\mathbb{E}\left[y_{t} \mid x_{t}\right]$.

Equivalent to the minimum of $\mathbb{E}\left[\left(y_{t}-\hat{y}_{t}\right)^{2} \mid x_{t}\right]$.

- Probabilistic forecast: estimation of $\mathcal{L}\left(y_{t} \mid x_{t}\right)$.

For $0<q<1$, we find $\hat{y}_{t, q}$ such that $\mathbb{P}\left(y_{t} \leq \hat{y}_{t, q} \mid x_{t}\right)=q$.
Equivalent to the minimum of $\mathbb{E}\left[\rho_{q}\left(y_{t}, \hat{y}_{t}\right) \mid x_{t}\right]$:

Adaptive Setting

- Offline / Batch: $\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right)$.

Example: Empirical Risk Minimizer

$$
\hat{\theta} \in \arg \min \sum_{t \in \mathcal{T}} \ell\left(y_{t}, f_{\hat{\theta}}\left(x_{t}\right)\right) .
$$

Adaptive Setting

- Offline / Batch: $\hat{y}_{t}=f_{\hat{\theta}}\left(x_{t}\right)$.

Example: Empirical Risk Minimizer

$$
\hat{\theta} \in \arg \min \sum_{t \in \mathcal{T}} \ell\left(y_{t}, f_{\hat{\theta}}\left(x_{t}\right)\right) .
$$

- Online / Adaptive: $\hat{y}_{t}=f_{\hat{\theta}_{t}}\left(x_{t}\right)$ with $\hat{\theta}_{t+1}=\Phi\left(\hat{\theta}_{t}, x_{t}, y_{t}\right)$. Example: Online Gradient Descent

$$
\hat{\theta}_{t+1}=\hat{\theta}_{t}-\left.\gamma_{t} \frac{\partial \ell\left(y_{t}, f_{\theta}\left(x_{t}\right)\right)}{\partial \theta}\right|_{\hat{\theta}_{t}} .
$$

Offline Model in Two Steps²

- Generalized Additive Model with Gaussian distribution for mean forecasting:

$$
y_{t}=f_{1}\left(x_{t, 1}\right)+\ldots+f_{d}\left(x_{t, d}\right)+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

f_{1}, \ldots, f_{d} : decomposed on spline basis: $f_{j}(x)=\sum_{k=1}^{m_{j}} \beta_{j, k} B_{j, k}(x)$.

[^0]
Offline Model in Two Steps²

- Generalized Additive Model with Gaussian distribution for mean forecasting:

$$
y_{t}=f_{1}\left(x_{t, 1}\right)+\ldots+f_{d}\left(x_{t, d}\right)+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

f_{1}, \ldots, f_{d} : decomposed on spline basis: $f_{j}(x)=\sum_{k=1}^{m_{j}} \beta_{j, k} B_{j, k}(x)$.

- Probabilistic forecasting: quantile regressions on the residuals because the Gaussian assumption is not satisfied in practice:

$$
\begin{aligned}
& \beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right), \\
& \rho_{q}\left(y, \hat{y}_{q}\right)=\left(\mathbb{1}_{y<\hat{y}_{q}}-q\right)\left(\hat{y}_{q}-y\right),
\end{aligned}
$$

where z_{t} contains the GAM prediction and the GAM effects. ${ }^{1}$

[^1]
Motivation for Adaptation

Train: 2014-2018. Test: 2019-2021.

Drift of Offline GAM

Introduction

Mean Forecast

Probabilistic Forecast

Linear Gaussian State-Space Model

- GAM:

$$
y_{t}-1^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Linear Gaussian State-Space Model

- GAM:

$$
y_{t}-1^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- State-Space Model

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}\left(0, Q_{t}\right) .
\end{aligned}
$$

Linear Gaussian State-Space Model

- GAM:

$$
y_{t}-1^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- State-Space Model

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}\left(0, Q_{t}\right) .
\end{aligned}
$$

Theorem (R. Kalman and R. Bucy, 1961)
If the state-space model is well-specified for known variances, and if $\theta_{1} \sim \mathcal{N}\left(\hat{\theta}_{1}, P_{1}\right)$, then $\theta_{t+1} \mid\left(x_{s}, y_{s}\right)_{s \leq t} \sim \mathcal{N}\left(\hat{\theta}_{t+1}, P_{t+1}\right)$ with

$$
\begin{aligned}
& P_{t \mid t}=P_{t}-\frac{P_{t} f\left(x_{t}\right) f\left(x_{t}\right)^{\top} P_{t}}{f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)+\sigma_{t}^{2}}, \quad P_{t+1}=P_{t \mid t}+Q_{t+1}, \\
& \hat{\theta}_{t+1}=\hat{\theta}_{t}-\frac{P_{t \mid t}}{\sigma_{t}^{2}}\left(f\left(x_{t}\right)\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right)-y_{t}\right)\right) .
\end{aligned}
$$

The Kalman Filter, a Gradient Algorithm

$$
\begin{aligned}
& P_{t \mid t}=P_{t}-\frac{P_{t} f\left(x_{t}\right) f\left(x_{t}\right)^{\top} P_{t}}{f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)+\sigma_{t}^{2}}, \quad P_{t+1}=P_{t \mid t}+Q_{t+1} \\
& \hat{\theta}_{t+1}=\hat{\theta}_{t}-\frac{P_{t \mid t}}{\sigma_{t}^{2}}\left(f\left(x_{t}\right)\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right)-y_{t}\right)\right)
\end{aligned}
$$

1. Static $^{3}: Q_{t}=0, \sigma_{t}^{2}=1$.
$\rightarrow P_{t \mid t}=O(1 / t)$.
2. Dynamic with constant variances: $Q_{t}=Q, \sigma_{t}^{2}=\sigma^{2}$.
$\rightarrow P_{t \mid t}=O(1)$. Comparable to Adam, AdaGrad.
3. Variance Tracking: dynamic with adaptive variances ${ }^{4}$.
[^2]
Constant Variances

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}(0, Q) .
\end{aligned}
$$

[^3]
Constant Variances

$$
\begin{aligned}
& y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right), \\
& \theta_{t}-\theta_{t-1} \sim \mathcal{N}(0, Q)
\end{aligned}
$$

- Non convex log-likelihood. No guarantee of optimality.
- Diagonal Covariance Matrix Q.

Optimization with iterative grid search ${ }^{4}$.

[^4]
Coefficient Evolution

State Evolution: Kalman Filtering

State Evolution: Kalman Filtering

Static setting (left): $\theta_{t+1}=\theta_{t} . P_{t \mid t}=O(1 / t)$.
Dynamic setting (right): $\theta_{t+1}-\theta_{t} \sim \mathcal{N}(0, Q) . P_{t \mid t}=O(1)$.

Correction of the Drift

Drift of Offline GAM

Drift of Kalman GAM

Performances

$R M S E=\sqrt{\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}}\left(y_{t}-\hat{y}_{t}\right)^{2}}, \quad M A E=\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}}\left|y_{t}-\hat{y}_{t}\right|$

	2019		2020		2021	
Forecast	nRMSE	nMAE	nRMSE	nMAE	nRMSE	nMAE
Persistence (7 days)	0.691	0.589	0.710	0.599	0.737	0.639
Persistence (2 days)	0.767	0.686	0.755	0.668	0.736	0.668
Offline GAM	0.356	0.327	0.485	0.453	0.635	0.601
Incremental offline GAM (yearly)	-	-	0.407	0.376	0.387	0.378
Incremental offline GAM (daily)	0.338	0.307	0.370	0.344	0.377	0.365
Kalman GAM (Static)	0.337	0.307	0.374	0.347	0.380	0.368
Kalman GAM (Dynamic)	$\mathbf{0 . 3 2 4}$	$\mathbf{0 . 2 9 2}$	$\mathbf{0 . 3 2 8}$	$\mathbf{0 . 3 0 1}$	$\mathbf{0 . 3 3 2}$	$\mathbf{0 . 3 0 7}$

Introduction

Mean Forecast

Probabilistic Forecast

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ and $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ and $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- If the model is well-specified:

$$
y_{t} \sim \mathcal{N}\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right), \sigma^{2}+f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)\right) .
$$

Probabilistic Forecast using the Kalman Filter

Under the state-space assumption: $\theta_{t} \mid\left(x_{s}, y_{s}\right)_{s<t} \sim \mathcal{N}\left(\hat{\theta}_{t}, P_{t}\right)$ and $y_{t}-\theta_{t}^{\top} f\left(x_{t}\right) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- If the model is well-specified:

$$
y_{t} \sim \mathcal{N}\left(\hat{\theta}_{t}^{\top} f\left(x_{t}\right), \sigma^{2}+f\left(x_{t}\right)^{\top} P_{t} f\left(x_{t}\right)\right)
$$

- In practice: mean forecast, then quantile regressions on the residuals $y_{t}-\hat{\theta}_{t}^{\top} f\left(x_{t}\right)$.
\rightarrow adaptive quantile regression ?

Adaptive Quantile Regression

Offline quantile regression:

$$
\beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{\delta_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right) .
$$

Adaptive Quantile Regression

Offline quantile regression:

$$
\beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right) .
$$

Online Gradient Descent with step size $\alpha>0$:

$$
\beta_{t+1, q}=\beta_{t, q}-\left.\alpha \frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}}
$$

where $\left.\frac{\partial \rho_{q}\left(y_{t}-\hat{\hat{t}}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}}=\left(\mathbb{1}_{y_{t}<\hat{y}_{t}+\beta_{t, q}^{\top} z_{t}}-q\right) z_{t}$.

Adaptive Quantile Regression

Offline quantile regression:

$$
\beta_{q} \in \arg \min _{\beta \in \mathbb{R}^{d_{0}}} \sum_{t \in \mathcal{T}} \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right) .
$$

Online Gradient Descent with step size $\alpha>0$:

$$
\beta_{t+1, q}=\beta_{t, q}-\left.\alpha \frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}}
$$

where $\left.\frac{\partial \rho_{q}\left(y_{t}-\hat{y}_{t}, \beta^{\top} z_{t}\right)}{\partial \beta}\right|_{\beta_{t, q}}=\left(\mathbb{1}_{y_{t}<\hat{y}_{t}+\beta_{t, q_{t}}^{\top}}-q\right) z_{t}$.
\rightarrow choice of α ?

Aggregation of Experts

- We use different step sizes α_{k}, typically 10^{k}.

[^5]
Aggregation of Experts

- We use different step sizes α_{k}, typically 10^{k}.
- Experts $\hat{y}_{t, q}^{(k)}$ obtained from α_{k}.

[^6]
Aggregation of Experts

- We use different step sizes α_{k}, typically 10^{k}.
- Experts $\hat{y}_{t, q}^{(k)}$ obtained from α_{k}.
- Aggregation of Experts: Bernstein Online Aggregation ${ }^{5}$:

$$
\hat{y}_{t, q}=\sum_{k} p_{t}^{(k)} \hat{y}_{t, q}^{(k)}
$$

where $p_{t}^{(k)}$ is obtained sequentially.

[^7]
Reliability

GAM Kalman + Offline QR: 2019

Reliability over Time

Evaluation Metric

We use the continuous ranked probability score ${ }^{6}$:

$$
\operatorname{CRPS}(F, y)=\int_{-\infty}^{+\infty}\left(F(x)-\mathbb{1}_{y \leq x}\right)^{2} d x=2 \int_{0}^{1} \rho_{q}\left(y, F^{-1}(q)\right) d q
$$

Discrete variant:

$$
\operatorname{RPS}\left(\left(\hat{y}_{q_{1}}, \ldots, \hat{y}_{q_{1}}\right), y\right)=\sum_{i=1}^{\prime} \rho_{q_{i}}\left(y, \hat{y}_{q_{i}}\right)\left(q_{i+1}-q_{i-1}\right)
$$

[^8]
Performances

	2019	2020	2021
Offline Method	0.231	0.338	0.454
GAM Kalman (Gaussian Quantiles)	0.212	0.217	0.222
GAM Kalman + Offline QR	$\mathbf{0 . 2 0 6}$	$\mathbf{0 . 2 1 4}$	$\mathbf{0 . 2 1 7}$
Offline GAM + QR OGD $\left(10^{-3}\right)$	0.218	0.270	0.293
Offline GAM + QR OGD $\left(10^{-2}\right)$	0.207	0.221	0.218
Offline GAM + QR OGD $\left(10^{-1}\right)$	0.250	0.248	0.293
Offline GAM + QR OGD (BOA)	0.204	0.211	0.216
GAM Kalman + QR OGD (10-2)	0.205	0.204	0.212
GAM Kalman + QR OGD (BOA)	$\mathbf{0 . 2 0 2}$	$\mathbf{0 . 2 0 1}$	$\mathbf{0 . 2 0 9}$

Conclusion

- Linear Gaussian state-space model: an adaptive mean forecaster. Interpretation as a gradient algorithm.
- Similar algorithm for probabilistic forecasting: Online Gradient Descent.

Future work:

- Extreme Forecasts Evaluation.
- Regional / local data can be seen as hierarchical.
- Definition of covariates: GAM, neural network...
- Choice of the variances (Variance Tracking).

Adaptive Probabilistic Forecasting of Electricity (Net-)Load: accepted for publication by IEEE Transactions on Power Systems, available on IEEE Xplore.

Viking Conseil

- Design of adaptive forecasting methods.
- Tests on various use cases: EDF, RTE, SNCF Énergie.
- Development of a forecasting platform to industrialise.

[^0]: ${ }^{1}$ P. Gaillard, P., Goude, Y., and Nedellec, R. (2016). Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting, International Journal of forecasting
 ${ }^{2}$ J. Browell and M. Fasiolo (2021), Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP, IEEE Transactions on Smart Grid

[^1]: ${ }^{1}$ P. Gaillard, P., Goude, Y., and Nedellec, R. (2016). Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting, International Journal of forecasting
 ${ }^{2}$ J. Browell and M. Fasiolo (2021), Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP, IEEE Transactions on Smart Grid

[^2]: ${ }^{3} \mathrm{~J}$. de Vilmarest, O. Wintenberger (2021), Stochastic Online Optimization using Kalman Recursion. Journal of Machine Learning Research
 ${ }^{4}$ J. de Vilmarest, O. Wintenberger (2021), Viking: Variational Bayesian Variance Tracking, arXiv:2104.10777

[^3]: ${ }^{4}$ D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, IEEE Transactions on Power Systems

[^4]: ${ }^{4}$ D. Obst, J. de Vilmarest, Y. Goude (2021), Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France, IEEE Transactions on Power Systems

[^5]: ${ }^{5}$ O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

[^6]: ${ }^{5}$ O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

[^7]: ${ }^{5}$ O. Wintenberger (2017), Optimal learning with Bernstein online aggregation, Machine Learning

[^8]: ${ }^{6}$ T. Gneiting and A. E. Raftery (2007), Strictly proper scoring rules, prediction, and estimation, Journal of the American statistical Association

