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Power Markets

MOTIVATION FOR THE MODEL :

The HJM framework for forward power prices can exhibit a truly
infinite-dimensional dynamics...

But we need more flexibility for modeling volatility (Samuelson effect, etc.) : BNS
can be a suitable setting...

and we want to allow jumps to appear in the asset dynamics as well (not only in
the volatility).

WE INVESTIGATE THE OPTIMAL PORTFOLIO PROBLEM IN THIS SETTING
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H-valued BNS-SV Model

Let X be a stochastic process with values in the Hilbert space H satisfying the following
stochastic differential equation : Let X = (X(t))t≥0 be a stochastic process taking

values in the Hilbert space H satisfying the following stochastic differential equation :

dX(t) =
(
AX(t) + b(t)

)
dt + Y1/2(t) dB(t)− Γ d(t),

X(0) = X0,
(1)

with stochastic volatility

dY(t) = C Y(t) dt + d(t),

Y(0) = Y0.
(2)

Here X0 (resp. Y0) is a fixed element of H (resp. H), while the coefficients A, C, β, b

satisfy the following standing assumptions.
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1) The operator A : D(A) ⊂ H → H is a linear, densely defined, operator and is the
infinitesimal generator of a strongly continuous semigroup on H, denoted by
{S(t), t ≥ 0}.

2) C is a bounded linear operator on H, namely C ∈ L(H), therefore C is the
infinitesimal generator of a uniformly continuous semigroup on H, denoted by
{S(t), t ≥ 0}.

3) b : [0,+∞) → H is Lipschitz continuous, namely

|b(t)− b(t ′)|H ≤ c |t − t ′|, ∀ t , t ′ ≥ 0, (3)

for some constant c ≥ 0.
4) Γ is a bounded linear operator from H into H, namely Γ ∈ L(H;H). We also

assume that Γ is preserving the non-decreasing path property.
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Moreover X0 ∈ H and Y is a H-valued stochastic process satisfying the following
stochastic differential equation :

dY(t) = CY(t)dt + dL, Y(0) = Y0, (4)

where we assume that Y(0) is self-adjoint, non-negative definite and L is an H-valued
Lévy process with non-decreasing paths. ρ is a linear, positive and bounded operator
acting on L, mapping LHS into H.

A is a linear operator on H, possibly unbounded, densely defined, generating a
C0-semigroup S. In Benth, Ruediger and Suess (SPA 2018) a detailed investigation on
the operator C and the conditions granting the positivity of the process Y are provided.
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BNS with Leverage

We have the following useful Lemma concerning the leverage term :

Lemma
Assume Γ ∈ L(H,H) and L is a Lévy process taking values in H. Then, ΓL(t) is an
H-valued Lévy process with Lévy-Kintchine representation

E [exp(i(ΓL(1), h)H)] = exp(ΨL(Γ
∗h))

for all h ∈ H, where ΨL(T ), T ∈ H is the characteristic exponent of L.

Sketch of the Proof : From Peszat and Zabczyk, ΓL is a Lévy process in H. Moreover,
for any h ∈ H we find that (ΓL(1), h)H = ⟨L(1), Γ∗h⟩H, and the Lévy-Kintchine
representation follows.
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We have the following mild solution :

X(t) = S(t)X0 +

∫ t

0
S(t −u)R(u)du+

∫ t

0
S(t −u)Y1/2(u)dB(u)+

∫ t

0
S(t −u)ΓdL(u).

(5)
Notice that by assumption on R and S being a C0-semigroup, the first integral above is
well-defined. The last integral is also well-defined, as ΓL is a Lévy process in H.

In the present section we consider a specific Hilbert space H, namely we will take
H = Hα, with Hα being the Filipović space. We also denote H by Hα and fix the
operator A, which will be given by ∂x .
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We fix some notations. Let R+ := [0,+∞) and let AC(R+) denote the set of absolutely
continuous functions h : R+ → R. We also denote by L(R+) (resp. Lloc(R+)) the set of
functions h : R+ → R which are integrable (resp. locally integrable) with respect to the
Lebesgue measure on R+.

Moreover, we recall that given h ∈ AC(R+), the weak derivative h′ ∈ L1
loc(R+) of h, if it

exists, is uniquely specified by the property :

∫
R+

h(x)φ′(x) dx = −
∫
R+

h′(x)φ(x) dx ,

for every φ ∈ C1
c ((0,∞)), with C1

c ((0,+∞)) being the set of C1-functions having
compact support in (0,∞).
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Standing Assumption : Let α : [0,+∞) → [1,+∞) be a fixed non-decreasing
continuous function satisfying α(0) = 1.

Definition

For every h ∈ AC(R+), we write

∥h∥α2 := |h(0)|2 +

∫ ∞

0
|h′(x)|2 α(x) dx

and define the Filipović space

Hα :=
{

h ∈ AC(R+) : ∥h∥α < ∞
}
.
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Remark : Notice that Hα turns out to be a separable Hilbert space, with scalar product

(h, g)α := h(0) g(0) +
∫ ∞

0
h′(x) g′(x)α(x) dx .

We also remark that, given a fixed x ∈ R+, the point evaluation δx : Hα → R, defined
as h 7→ δx (h) := h(x), is a continuous linear functional on Hα. In the present section
we suppose that the Hilbert space H is given by Hα.

Carlo Sgarra (Polimi) WPI, VIENNA, September 12-15, 2023 12 / 38



Portfolio Optimization for a Hilbert-Valued SV Model with Jumps

Proposition : Let ∂x : Dα → Hα be defined as h 7→ h′, with Dα := {h ∈ Hα : h′ ∈ Hα}.
Then, ∂x is the infinitesimal generator of the strongly continuous semigroup on Hα,
denoted by {Shift (t), t ≥ 0}, corresponding to the right shift operator :

(Shift (t)h)(x) = h(x + t), ∀ x ∈ R+, h ∈ Hα,

for every t ≥ 0. The semigroup {Shift (t), t ≥ 0} is quasi-contractive, namely there
exists β0 > 0 such that

∥Shift (t)∥L(Hα) ≤ eβ0t , (6)

for every t ≥ 0.

Proof : see Filipovic (2001)[Theorem 5.1.1, Remark 5.1.1] and Benth and Kruehner
(2014)[Theorem 3.4, Lemma 3.5].
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Standing Assumption : The Hilbert space H is equal to Hα and, consequently, we
denote H by Hα. Moreover, the operator A is given by ∂x (with domain D(A) = Dα).

In the present section, we provide the dynamics of the wealth generated by trading on
future contracts. A futures contract is a derivative security written on the futures price,
which is denoted by f (t). Notice that, since interest rates are assumed to be constant,
in the present context forward and futures prices can be identified. Consider X , mild
solution to our equation with H = Hα, H = Hα, A = ∂x . Then, the process X can be

thought as the dynamics of the forward curve, namely

f (t , x) := δx (X(t)) = X(t)(x),

where f (t , x) = F (t , t + x) (also denoted by f (t)(x)) and (F (t ,T ))t∈[0,T ] is the forward
price dynamics of a contract delivering at time T .
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As a consequence, we have that f solves the following stochastic differential equation :

f (t) = S(t) f0 +

∫ t

0
S(t − u) b(u) du +

∫ t

0
S(t − u)Y1/2(u) dB(u)

−
∫ t

0
S(t − u) Γ d(u)

(7)

or, equivalently,

f (t , x) = S(t) f0(x) + δx

∫ t

0
S(t − u) b(u) du + δx

∫ t

0
S(t − u)Y1/2(u) dB(u)

− δx

∫ t

0
S(t − u) Γ d(u),

(8)

with f0(x) := δx (X0) = X0(x).
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For every t ≥ 0, let (Gt
s)s≥t be the standard augmentation of the filtration generated by

(B(s)− B(t))s≥t and (L(s)− L(t))s≥t . Let also M > 0 and denote by
BM := {p ∈ H∗

α : |p|H∗
α
≤ M} a fixed ball in the dual space H∗

α.

Then, for every t ≥ 0, we denote by ΠM
t the set of futures portfolios on the time interval

[t ,T ], namely the set of all (Gt
s)s≥t -predictable processes π : [t ,T ]× Ω → H∗

α taking
values in BM (in other words, ΠM

t is the set of all (Gt
s)s≥t -predictable processes taking

values in the dual space H∗
α, which are uniformly bounded by M).

Given an initial time t ∈ [0,T ], an initial wealth w ∈ R, an initial volatility Z ∈ Hα, and a
futures portfolio π ∈ ΠM

t , we define the wealth generated by such a portfolio as follows :

Carlo Sgarra (Polimi) WPI, VIENNA, September 12-15, 2023 16 / 38



Portfolio Optimization for a Hilbert-Valued SV Model with Jumps

dW t,w,Z,π(s) =
[
rW t,w,Z,π(s) + ⟨π(s), b(s)⟩

]
ds +

〈
π(s), (Y t,Z(s))1/2 dB(s)

〉
−

〈
π(s), Γ dL(s)

〉
, t ≤ s ≤ T ,

(9)

W t,w,Z,π(t) = w ,

with Y t,Z mild solution to the following equation :

Y t,Z(s) = C Y t,Z(s) ds + dL(s), t ≤ s ≤ T ,

Y t,Z(t) = Z,
(10)

where r > 0 denotes the risk-free rate of return, while ⟨·, ·⟩ : H∗
α × Hα → R is the

natural bilinear pairing between Hα and its dual H∗
α.
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Proposition : Let 0 ≤ t ≤ t1 < T and π ∈ ΠM
t . Let also ξ : Ω → R and Ξ: Ω → Hα be

Gt
t1

-measurable and such that E|ξ|2 + E|Ξ|2Hα
<∞. Then, there exists a unique (up to

P-indistinguishability) mild solution (W t1,ξ,Ξ,π(s),Y t1,Ξ(s))s∈[t1,T ] to our system
explicitly given by the following formulae :

W t1,ξ,Ξ,π(s) = ξ +

∫ s

t1
er(s−u)⟨π(u), b(u)⟩ du +

∫ s

t1
er(s−u)〈π(u), (Y t1,Ξ(u))1/2 dB(u)

〉
−

∫ s

t1
er(s−u)〈π(u), Γ dL(u)

〉
, t1 ≤ s ≤ T ,

Y t1,Ξ(s) = S(s − t1) Ξ +

∫ s

t1
S(s − u) dL(u), t1 ≤ s ≤ T ,

where {S(u), u ≥ 0} is the uniformly continuous semigroup with infinitesimal generator
C.
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Moreover, it holds that

E
[

sup
t1≤s≤T

(∣∣W t1,ξ,Ξ,π(s)
∣∣2 +

∣∣Y t1,Ξ(s)
∣∣2
Hα

)]
≤ C

(
1 + E|ξ|2 + E|Ξ|2Hα

)
,

for some positive constant C, not depending on t , t1, ξ,Ξ, π. Proof : See Theorem 3.4
in Swiech and Zabczyk (2013).

The optimal control problem consists in finding a futures portfolio maximizing the
expected utility from terminal wealth :

V (t ,w ,Z) = sup
π∈ΠM

t

E
[
U(W t,w,Z,π(T ))

]
, (11)

for every (t ,w ,Z) ∈ [0,T ]× R×Hα.
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Proposition : The value function V satisfies the following properties :

|V (t ,w ,Z)− V (t ,w ′,Z′)| ≤ σ
(
|w − w ′|+ |Z − Z′|Hα

)
, t ∈ [0,T ], (w ,Z) ∈ R×Hα,

|V (t ,w ,Z)− V (s,w ,Z)| ≤ σR(|t − s|), t , s ∈ [0,T ], |w |, |Z|Hα ≤ R,

|V (t ,w ,Z)| ≤ C
(
1 + |w |+ |Z|Hα

)
, (t ,w ,Z) ∈ [0,T ]× R×Hα

for some positive constant C, where, for every R > 0, σR is a modulus of continuity,

namely a continuous subadditive function on [0,∞) such that σR(0) = 0 and
σR(a) > 0, whenever a > 0 ; finally, σ is also a modulus of continuity.

Proof : The claim follows from Lemma 4.1 and Lemma 4.3 in Swiech and Zabczyk
(2013) and also from our previous Remark on continuity.
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THEOREM [Dynamic Programming Principle] :

Let 0 ≤ t ≤ t1 ≤ T , w ∈ R, Z ∈ Hα, and π ∈ ΠM
t . Then

V (t ,w ,Z) = sup
π∈ΠM

t

E
[
V
(
t1,W t,w,Z,π(t1),Y t,Z(t1)

)]
.

Proof : The claim follows from Theorem 3.14 and Theorem 4.2 in Swiech and Zabczyk

(2016).
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The Hamilton-Jacobi-Bellman equation associated with such an optimization problem
turns out to be the following integro-PDE :



∂t V (t ,w ,Z) + sup
p∈H∗

α

{(
r w + ⟨p, b(t)⟩ − ⟨p, ΓD⟩

)
∂w V (t ,w ,Z)

+
(
CZ +D, ∂ZV (t ,w ,Z)

)
Hα

+

∫
Hα

{
V (t ,w − ⟨p, ΓR⟩,Z +R)− V (t ,w ,Z)

− 1{|R|Hα<1}
(
(R, ∂ZV (t ,w ,Z))Hα − ⟨p, ΓR⟩∂w V (t ,w ,Z)

)}
ν(dZ)

+
1
2

∣∣⟨p,Z1/2Q1/2·⟩
∣∣2
2∂

2
ww V (t ,w ,Z) + ⟨p, ΓQc∂2

wZV (t ,w ,Z)⟩

+
1
2

Tr
[
Qc∂2

ZZV (t ,w ,Z)
]}

= 0, (t ,w ,Z) ∈ [0,T )× R×Hα,

V (T ,w ,Z) = U(w), (w ,Z) ∈ R×Hα,

(12)
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where, for every fixed p ∈ H∗
α, ⟨p,Z1/2Q1/2·⟩ is the functional from Hα into R such

that h 7→ ⟨p,Z1/2Q1/2h⟩, and

∣∣⟨p,Z1/2Q1/2·⟩
∣∣
2 :=

(∑
n∈N

∣∣⟨p,Z1/2Q1/2en⟩
∣∣2)1/2

,

where {en}n∈N is an orthonormal basis of Hα.
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Definition : We say that ψ : [0,T ]× R×Hα → R is a test function if

ψ(t ,w ,Z) = φ(t ,w ,Z) + δ(t ,w ,Z) h
(√

|w |2 + |Z|2Hα

)
, (13)

where :
i) φ is bounded and ∂tφ, ∂wφ, ∂Zφ, ∂2

wwφ, ∂2
wZφ, ∂2

ZZφ are uniformly continuous
on (ε,T − ε)× R×Hα, for every ε > 0.

ii) δ is non-negative and bounded, moreover ∂tδ, ∂wδ, ∂Zδ, ∂2
wwδ, ∂2

wZδ, ∂
2
ZZδ are

uniformly continuous on (ε,T − ε)× R×Hα, for every ε > 0.
iii) h is even and bounded, h′ and h′′ are uniformly continuous on R, h′(a) ≥ 0, for

every a > 0.
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Definition : Let U : [0,T ]× R×Hα → R be a function.

U is said to be a viscosity subsolution of HJB if it is upper-semicontinuous,

U(T ,w ,Z) ≤ U(w), for every (w ,Z) ∈ R×Hα

and whenever U − ψ has a global maximum at a point
(t ,w ,Z) ∈ [0,T )× R×Hα for a test function ψ, then HJB holds with V and =
replaced respectively by ψ and ≥.

U is said to be a viscosity supersolution of HJB if it is lower-semicontinuous,

U(T ,w ,Z) ≥ U(w), for every (w ,Z) ∈ R×Hα

and whenever U + ψ has a global minimum at a point (t ,w ,Z) ∈ [0,T )×R×Hα

for a test function ψ, then HJB holds with V and = replaced respectively by −ψ
and ≤.

U is said to be viscosity solution of if it is continuous and it is both a viscosity
subsolution and a viscosity supersolution.
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THEOREM :

The value function V is a viscosity solution of HJB. If in addition V is bounded and
uniformly continuous on [0,T ]× R×Hα, then it is the unique viscosity solution of HJB
in the class of bounded and uniformly continuous functions on [0,T ]× R×Hα.

Proof : The existence part follows from Theorem 5.4 in Swiech and Zabczyk (2016),
while the uniqueness part is a consequence of Theorem 6.2 in Swiech and Zabczyk
(2013).
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Theorem : Suppose that there exist V̂ : [0,T ]× R×Hα → R and
p̂ : [0,T ]× R×Hα → H∗

α satisfying the following conditions.
i) V̂ ∈ C1,2,2([0,T ]× R×Hα) and V̂ is a classical solution of HJB.
ii) There exists a positive constant Ĉ such that

|V̂ (t ,w ,Z)| ≤ Ĉ
(
1 + |w |+ |Z|Hα

)
,

for all (t ,w ,Z) ∈ [0,T ]× R×Hα.
iii) p̂ : [0,T ]× R×Hα → H∗

α is a Borelian function such that, for every fixed
(t ,w ,Z), the supremum appearing in HJB, with V replaced by V̂ , is attained at
p = p̂(t ,w ,Z).

iv) For every (t ,w ,Z) ∈ [0,T ]× R×Hα, there exists a (Gt
s)s≥t -adapted and càdlàg

process (Ŵ t,w,Z(s))s∈[t,T ] solution to the wealth equation controlled by p̂, namely

Carlo Sgarra (Polimi) WPI, VIENNA, September 12-15, 2023 27 / 38



Portfolio Optimization for a Hilbert-Valued SV Model with Jumps

Ŵ t,w,Z(s) = w +

∫ s

t
er(s−u)⟨p̂(u, Ŵ t,w,Z(u),Y t,Z(u)), b(u)⟩ du

+

∫ s

t
er(s−u)〈p̂(u, Ŵ t,w,Z(u),Y t,Z(u)), (Y t,Z(u))1/2 dB(u)

〉
−

∫ s

t
er(s−u)〈p̂(u, Ŵ t,w,Z(u),Y t,Z(u)), Γ dL(u)

〉
, t ≤ s ≤ T ,

with (Y t,Z(s))s∈[t,T ] such that

Y t,Z(s) = S(s − t) Ξ +

∫ s

t
S(s − u) d(u), t ≤ s ≤ T ,

Moreover, the stochastic process π̂, defined as

π̂(s) = p̂(s, Ŵ t,w,Z(s),Y t,Z(s)), s ∈ [t ,T ],

belongs to ΠM
t .

Then, it holds that V̂ ≡ V and π̂ is an optimal control.
Proof : The claim follows directly from an application of Itô’s formula between s = t and
s = T to s 7→ V (s,W t,w,Z,π(s),Y t,Z(s)), with π ∈ ΠM

t , and to
s 7→ V (s, Ŵ t,w,Z(s),Y t,Z(s)).

Carlo Sgarra (Polimi) WPI, VIENNA, September 12-15, 2023 28 / 38



Portfolio Optimization for a Hilbert-Valued SV Model with Jumps

The NO-LEVERAGE case

Now we want to show that an explicit solution to the optimal portfolio problem in the
present setting in available for the NO-LEVERAGE case (Γ = 0 ).

The HJB equation in this case can be written as follows :



∂t V (t ,w ,Z) + sup
p∈H∗

α

{(
r w + ⟨p, b(t)⟩+

1
2

∣∣⟨p,Z1/2Q1/2·⟩
∣∣2
2∂

2
ww V (t ,w ,Z)

}

+
(
CZ +D, ∂ZV (t ,w ,Z)

)
Hα

+
1
2

Tr
[
Qc∂2

ZZV (t ,w ,Z)
]
+

+

∫
Hα

{
V (t ,w ,Z +R)− V (t ,w ,Z)− 1{|R|Hα<1}

(
(R, ∂ZV (t ,w ,Z))Hα −

}
ν(dR) = 0,

(t ,w ,Z) ∈ [0,T )× R×Hα,V (T ,w ,Z) = U(w), (w ,Z) ∈ R×Hα.

(14)
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An explicit solution

We assume that the utility function is of power type, i.e. U(x) = γ−1xγ with γ ∈ (0, 1).
We guess a solution V (t ,w ,Z) of the form V (t ,w ,Z) = γ−1wγh(t ,Z). The HJB
equation becomes then :



∂t h(t ,Z) + γΠ(Z)h(t ,Z) +
(
CZ +D, ∂Zh(t ,Z)

)
Hα

+
1
2

Tr
[
Qc∂2

ZZh(t ,Z)
]
+

+

∫
Hα

{
h(t ,Z +R)− h(t ,Z)− 1{|R|Hα<1}

(
(R, ∂Zh(t ,Z))Hα −

}
ν(dR) = 0,

(t ,Z) ∈ [0,T )× R×Hα, h(T ,Z) = 1,Z ∈ Hα,

(15)

Carlo Sgarra (Polimi) WPI, VIENNA, September 12-15, 2023 30 / 38



Portfolio Optimization for a Hilbert-Valued SV Model with Jumps

where Π(Z) is defined by :

Π(Z) := sup
p∈H∗

α

{(
r + ⟨p, b(t)⟩+

1
2

∣∣⟨p,Z1/2Q1/2·⟩
∣∣2
2(1 − γ)

}
. (16)

In order to get a more explicit representation for Π(Z), we need to find the optimum in
the previous expression. A first order condition provides the following relation :

b(t) + (1 − γ)
∑
n∈N

Z1/2Q1/2en⟨p,Z1/2Q1/2·⟩ = 0. (17)
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by projecting both p and b on the orthonormal basis en we can write :

p(t) =
∑
n∈N

pn(t)en (18)

b(t) =
∑
n∈N

bn(t)en, (19)

in such a way that the first-order condition can be rewritten as follows :

bn(t)en − (1 − γ)pn(t)Z1/2Q1/2en⟨Z1/2Q1/2en, en⟩ = 0, (20)

and these equations should hold for every n ∈ N.
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By writing
Z1/2Q1/2en = λnen, (21)

we get :

bn(t)en − (1 − γ)pn(t)λ2
nen = 0, (22)

for every n ∈ N.
By multiplying both sides on the left by e∗

n , we finally obtain :

pn(t) = bn(t)
1

(1 − γ)λ2
n

(23)

Remark : discussion on the spectral properties of Q, Z, Z1/2Q1/2.
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Let’s define the function g(t ,Z) as follows :

g(t ,Z) = E
[
exp (

∫ t

0
γΠ(Z(u))du)

]
, (24)

We assume an integrability condition of the following kind :∫
∥Z∥H≥1

exp (⟨Z,Θ⟩H) ν(dZ) <∞, (25)

for Θ ∈ H.
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Lemma : Assume Condition given before holds, then, for some positive constant k :

g(t ,Z) ≤ exp [kt + (B + C)−1Z], (26)

where B := supΠ(Z).

Lemma : Assume Condition given before holds, then :

E
[ ∫ T

0

∫ ∞

0
[g(u,Z(u) +R)− g(u,Z(u))]ν(dR)du

]
≤ ∞ (27)
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Lemma : If conditions given before are satisfied, then g(t ,Z) belongs to the domain of
the generator and satisfies the following equation :



∂t g(t ,Z) + γΠ(Z)g(t ,Z) +
(
CZ +D, ∂Zg(t ,Z)

)
Hα

+
1
2

Tr
[
Qc∂2

ZZg(t ,Z)
]
+

+

∫
Hα

{
h(t ,Z +R)− g(t ,Z)− 1{|R|Hα<1}

(
(R, ∂Zg(t ,Z))Hα −

}
ν(dR) = 0,

(t ,Z) ∈ [0,T )× R×Hα, g(T ,Z) = 1,R ∈ Hα.

(28)
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Under assumptions given above the solution of the reduced HJB is given by
h(t ,Z) = g(T − t ,Z), i.e. :

h(t ,Z) = E
[
exp (

∫ T

t
γΠ(Z(u))du)

]
. (29)

Remark : in order to show that the function proposed is really a solution of the HJB
equation we must prove the Frechet differentiability with respect to Z. This is possible,
but there are a few technicalities that cannot be fully developed in the few minutes left.
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